Website is intended for physicians
Search:
Всего найдено: 12

Abstract:

Aim: was to study the impact of angiographic projection on patient and operator radiation dose during endovascular interventions aimed at diagnosing and treating cerebrovascular diseases.

Materials and methods: in experiment, radiation dose rate of phantom model (cGy?cm2/s) and equivalent dose rate from scattered radiation (mSv/h) measured in the area of conditional location of operator were studied when the angle of the X-ray tube was changed in modes of digital subtraction angiography (DSA) and fluoroscopy. Radiation dose rate of endovascular surgeon (mSv/h) was assessed during 12 cerebral angiography procedures and 15 neuro-interventions in general angiographic projections. Values of the kerma-area product (Gy?cm2), fluoroscopy time (min), operator exposure dose (µSv) during 87 procedures of endovascular occlusion of aneurysm of cavernous and supraclinoid sections of internal carotid arteries (ICA) were retrospectively analyzed to indirectly assess the effect of angiographic projection on patient and surgeon occupational dose. Interventions were divided into 2 groups depending on the location of detected aneurysm. The 1st group included 35 operations in the right ICA, the 2nd group included 53 operations in the left ICA.

Results: in experimental study, highest values of radiation dose rate of the phantom model were found in frontal projection with cranial angulation, lowest - in lateral and oblique projections; The highest average dose rates from scattered radiation in operator's area were found in left lateral projections whereas the smallest in right lateral projection in DSA mode and also in frontal and right lateral projections in fluoroscopy mode.

When studying doses of scattered radiation during neuro-interventional procedures, it was found that when the position of the X-ray tube changes from 0° in the direction of left lateral projection, an increase in the average dose rate of the operator in the DSA mode is up to 2,6 times, with fluoroscopy - up to 2,4 times. The equivalent dose rate in left lateral projection is up to 1.5 times higher than in right lateral projection. In left oblique projection, there is an increase in dose rate up to 2,3 times compared to right oblique projection.When comparing radiation exposure indicators during aneurysm embolization procedures, a significant increase in operator exposure doses is observed in group of interventions in the left ICA.

Conclusion: when performing neuro-interventional procedures, it is possible to achieve a significant reduction in radiation exposure to patient and operator without a significant loss in image quality along with maintaining optimal visualization of pathological changes by choosing angiographic projections with lower radiation doses.

 

 

Abstract:

Introduction: pathological tortuosity of internal carotid arteries (ICA) is widespread; its frequency in population varies within 18-34%. Currently, there are several approaches for the determination of indications for surgical intervention in pathological ICA tortuosity. The main criteria are hemodynamic changes in the arterial flow and the presence of neurological symptoms, so an informative preoperative examination is an integral part in treatment strategy determination in patients' subsequent treatment.

Aim: was to estimate the condition of carotid arteries and substance of the brain in isolated pathological tortuosity and in combination with stenotic lesions, based on results of CT angiography.

Materials and methods: we analyzed results of examination and treatment of 70 patients. Ultrasound and CT angiography of brachiocephalic arteries were performed on a Philips iCT 256-slice multislice computed tomograph. During CT angiography, a non-contrast study, arterial and venous phases of contrast enhancement were performed with an intravenous bolus injection of 50.0 ml of isoosmolar iodinated contrast-agent at 4-5 ml/sec.

Patients were divided into two groups: patients with isolated pathological carotid tortuosity (28 pts) and patients with a combination of carotid tortuosity and stenotic lesions (42 pts). We assessed the effect of carotid tortuosity on the severity of the brain tissue alterations using statistical analysis.

Results: a lesser severity of changes in the substance of the brain was noted in patients in the group with isolated pathological tortuosity of ICA. In 9 cases, we did not detect focal lesions; in 15 cases, small foci of microangiopathy and individual cerebrospinal fluid cysts were noted, in 4 patients, we noted areas and zones of cystic-glial changes. S- and C-shaped deformation became the most frequent variants of tortuosity; the formation of 3 saccular aneurysms (two true and one false) was revealed.

Manifestations of ischemic damage of the brain substance in the group of patients with a combination of ICA tortuosity and stenotic lesion were more pronounced. Thus, in 11 cases, zones and areas of cystic-glial changes were determined within the framework of past cerebrovascular accidents; in 20 patients, foci of microangiopathy expressed in varying degrees, as well as individual cerebrospinal fluid cysts, were noted. In 11 cases, no focal lesions were detected in the brain.

Statistical processing showed a correlation between the condition of carotid arteries and the presence of focal brain damage - in the group with combination of pathological tortuosity and stenosis of ICA, more pronounced chronic ischemic brain damage was detected (p=0,012).

Conclusion: CT-angiography was noted to be highly informative in assessment of condition of carotid arteries and brain substance in patients with isolated pathological tortuosity, as well as in combination with a stenotic lesion of internal carotid arteries. With a combination of pathological tortuosity and a stenosis in internal carotid arteries, data were obtained on a more pronounced damage of the brain substance. According to computed tomography, clinical manifestations of chronic cerebrovascular insufficiency were generally more pronounced compared to changes in the brain substance. However, there was a correlation between the increase in the degree of chronic cerebrovascular insufficiency and the aggravation of the state of the brain substance.

 

Abstract

Aim: was to evaluate the effectiveness of carotid arterial revascularization by stenting of internal carotid arteries (ICA) in patients with a previous ischemic stroke.

Materials and methods: in FSBI «Treatment and rehabilitation center» of the Ministry of Health of Russia,104 patients on treatment and rehabilitation after previous ischemic stroke, underwent stenting of symptomatic atherosclerotic stenosis of the ICA. The average time since stroke was 67 days (from 28 to 273 days). ICA stenting was performed according to generally accepted standards with the mandatory use of intravascular protective devices against cerebral embolism. In most patients we used a filter protection system (77 observations), and for stenosis of more than 95% and in the presence of an unstable atherosclerotic plaque, a proximal defense system was used (27 patients). In some cases, if the situation required it, a combination of protective devices was used (5 observations). A few days before upcoming operation, all patients were evaluated for microcirculation and perfusion in brain tissue using single photon emission computed tomography (SPECT), followed by analysis of results and comparison with SPECT data in the postoperative period.

Results: when analyzing 30 days after stenting, there were no fatal outcomes. In one case (0.96%) after stenting of the subtotal stenosis of the ICA, a hemorrhagic stroke on the ipsilateral side developed on the fifth day. In another case, intraoperative embolism of the ophthalmic artery occurred on the side of the operation with partial loss of vision field.

In the long-term period (4 years and 7 months), the number of undesirable events was 2%. In one case (0.96%), the patient died of ischemic stroke on the ipsilateral side after 3 years and 2 months after stenting. In another case, patient after 1 year and 2 months had an ischemic stroke on the side of the operation. Thus, the total number of complications associated with ICA stenting (30-day period + long-term period) was 3.8%.

When evaluating results of stenting by the SPECT method, the state of cerebral perfusion was assessed using perfusion maps in two modes and by axial perfusion sections.

In all observations after stenting, improvement of cerebral perfusion was noticed, regardless of the side and severity of ICA stenosis and the presence of focal postischemic changes. Visually, perfusion sections show a general increase in cerebral blood perfusion (CBP), a decrease in one-sided focal deficiency of CBP . Same results were obtained for relative cortex perfusion (relCP) in four regions and in vascular basins.

Comparing results, obtained by the number of undesirable events (strokes, restenosis and death) with the four-year data of the analysis of the international CREST study, the complication rate in our group is significantly lower (3.8% versus 8.6% in the CREST stenting group and 8.4% in carotid endarterectomy group CREST).

Conclusion: carotid stenting is an effective method of treatment of atherosclerotic lesions of main cerebral arteries in patients with previous stroke. The effectiveness of this type of treatment is confirmed by a positive clinical result and with the help of modern diagnostic methods, in particular SPECT.

 

References

1.     Damulin IV, Parfenov VA, Skoromets AA, Yah NN. Circulatory disorders in the brain and spinal cord. In the book: «Diseases of the nervous system. A guide for doctors». Yakhno N.N., Shtulman D.R. (ed.). 2003; 231302 [In Russ].

2.     Thom T, Haase N, Rosamond W et al. Heart disease and stroke statistics - 2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2006;113:e85-151.

3.     Kleindorfer D, Panagos P, Pancioli A et al. Incidence and short term prognosis of transient ischemic attack in a population-based study. Stroke. 2005;36: 720-723.

4.     Gusev EI, Skvortsova VI, Stakhovskaya LV. The problem of stroke in the Russian Federation: a time of active joint action. Zhurn. nevrol. and a psychiatrist. 2007; 8: 4-10 [In Russ].

5.     Gusev EI, Skvortsova VI, Stakhovskaya LV. Epidemiology of stroke in the Russian Federation. appendix of the Journal. nevrol. and a psychiatrist. them. SS Korsakova. 2003; 8: 4-9 [In Russ].

6.     Pinchuk EA. «Epidemiology and secondary prevention of ischemic stroke in a large industrial and cultural center» Diss. Cand. med. sciences. Ekaterinburg, 2004;136-137 [In Russ].

7.     Kadykov AS. Prevention of repeated ischemic stroke. AS Kadykov, NV Shakhparonova. Consilium medicum. 2006; 2: 96-99 [In Russ].

8.     Pokrovsky AV, KiyashkoVA. Ischemic stroke can be prevented. Rus. med. Journal. 2003; 11 (12): 691-695 [In Russ].

9.     Parfenov VA, Gurak SV. Repeated ischemic stroke and its prevention in patients with arterial hypertension. Zhurn. nevrol. and psychiatrist. them. SS Korsakova. Stroke. 2005; 14: 3-7 [In Russ].

10.   Sacco RL, Adams R, Albers G et al. Guidelines for Prevention of Stroke in Patients With Ischemic Stroke or Transient Ischemic Attack: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association Council on Stroke: Co-Sponsored by the Council on Cardiovascular Radiology and Intervention: The American Academy of Neurology affirms the value of this guideline. Stroke. 2006; 37: 577 - 617.

11.   Touze E, Varenne O, Chatellier G et al. Risk of myocardial infarction and vascular death after transient ischemic attack and ischemic stroke: a systematic review and meta-analysis. Stroke. 2005; 36:2748-2755.

12.   Kjellstrom T, Norrving B, Shatchkute A. Helsingborg Declaration 2006 on European Stroke Strategies. Helsingborg Declaration 2006 On European Stroke Strategies; pp. 9-12. Cerebrovasc Dis. 2007; 23(2-3): 231-41.

13.   European Carotid Surgery Triallists Collaborative Group: NRC European Carotid Surgery Trial; Interim results for symptomatic patients with severe (70-99%) or with mild (0-29%) carotid stenosis. Lancet. 1991; 337:1235-1243.

14.   North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effects of carotid endarterectomy in symptomatic patients with high-grade stenosis. N Engl J Med. 1991; 325:445-453.

15.   Asymptomatic Carotid Atherosclerosis Study. Clinical advisory: Carotid endarterectomy for patients with asymptomatic internal carotid artery stenosis. Stroke. 1994; 25:2523-2524.

16.   Brott TG, Hobson RW 2nd, Howard G, Roubin FS, et al. "CREST Investigators. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med. 2010 Jul 1;363(1):11-23.

17.   Brown MM, Mas JL, Ringleb PA, Hacke W. Carotid artery stenting versus surgery: adequate comparisons? Lancet Neurol. 2010 , 9:341-342.

18.   Volzhenin VE, Dolinina EG, Dontsov AE et al. The state of cerebral blood flow according to SPECT, MRI and MPA. Thes. doc. 2nd Congress of the Russian Society of Nuclear Medicine. Modern problems of nuclear medicine and pharmaceuticals. Obninsk, 2000; 174-175 [In Russ].

 

Abstract:

The report is about giant false aneurysm of an extracranial part of the left internal carotid artery (ICA) in a patient aged one year and nine months. The reason of the complexity of diagnostics in this case was that the dissection of the ICA with formation of false aneurysm imitated the peritonsillar abscess' clinic. We have not found any descriptions of a similar cases of patients at such an early age in modern literature.

 

References

1.      Nikitina T.G., Kochurkova E.G., Petrosyan K.V., Alekyan B.G. Application of a stent-graft to correct a false aneurysm of the internal carotid artery. Creative. cardiol. 2015; 1: 66 [In Russ].

2.      Kalashnikova L.A. Dissection of arteries, blood supplying the brain, and disorders of cerebral circulation. Ann. clin. and exper. neurology. 2007; 1 (1): 41-49 [In Russ].

3.      Schievink W.I. Spontaneous dissection of the carotid and vertebral arteries. N. Engl. J. Med. 2001; 344: 898— 906. doi.org/10.1056/NEJM200103223441206.

4.      Fullerton HJ, JohnstonSC, Smith WS. Arterial dissection and stroke in children. Neurology, 2001; 57: 1155-1160.

5.      Kalashnikova L.A., Dobrynina L.A., Chechetkin A.O., Dreval M.V., Krotenkova M.V., Zakharkina M.V. Disorders of cerebral circulation in the dissection of the internal carotid and vertebral arteries. Algorithm of diagnostics. Nerve. disease. 2016; 2: 10-15 [In Russ].

6.      Kieslich M., Fiedler A., Heller C. et al. Minor head injury as cause and co-factor in the aetiology of stroke in childhood: a report of eight cases. J. Neurol. Neurosurg. Psychiatry 2002; 73: 13-6.

7.      Seerig M.M., Chueiri L., Jacques J. et alt. Bilateral Peritonsillar Abscess in an Infant: An Unusual Presentation of Sore Throat. Case Rep Otolaryngol. 2017; 2017: 467015. doi.org/10.1155/2017/4670152.

8.      Mazur E, Czerwinska E, Korona-Gtowniak I, Grochowalska A, Koziot-Montewka M. Epidemiology, clinical history and microbiology of peritonsillar abscess. Eur J Clin Microbiol Infect Dis. 2015 Mar; 34(3):549-54. doi.org/10.1007/s10096-014-2260-2.  

 

Abstract:

Aim: was to analyze long-term results of carotid endarterectomy (CEA) in patients with unilateral lesion of the internal carotid artery (ICA), the lack of/or insignificant lesion on the contralateral side on statin therapy.

Materials and methods: for the period January 2009-December 2010, 262 CEA performed in 262 patients. Evaluated results of survival rate, stroke and myocardial infarction, condition of carotid arteries, effect of various factors on features of atherosclerotic lesions and effect of statin therapy on these processes.

Results: in late follow-up period - 245(93,5%) survivors. Patients were divided into groups: simvastatin - 60(24,5%) patients, atorvastatin - 134(54,7%) observations, rosuvastatin - 51(20,8%) cases. 14 patients died, data were obtained on the 13, average loss of 6.06%. The frequency of cardiovascular events leading to death is seven cases. Non-fatal stroke of any location - 5(1,9%) observations. The influence of hypertension (p=0,019), smoking (p=0,004), type 2 diabetes (p=0,03), dyslipidemia: hypercholesterolemia (p=0,05), hypertriglyceridemia (p=0,02), low-density lipoprotein (LDL) level is higher than normal (p=0,015), high-density lipoprotein (HDL) is below normal (p = 0,03) and other factors. Lowering cholesterol by 5,9% is marked in the atorvastatin group, maintaining at recommended values throughout the period from the initial selection in the rosuvastatin group (p = 0,0001). LDL cholesterol decreased by 19,1% in the mean value in the atorvastatin group (p = 0,0001), the increase of HDL level of 3,4% in the rosuvastatin group (p=0,02). Achievement of recommended levels of cholesterol was more often observed in the rosuvastatin group at 64,7% compared with simvastatin (p = 0,03). Risk factors influenced the incidence of restenosis ipsilateral side in 3 patients (1,2%). The greatest influence of risk factors was determined in the atorvastatin group (4,1%, p=0,001). Atorvastatin therapy stabilized the wall of the ICA 17,6% more often (p=0,05) and contralateral common carotid artery, leaving it intact at 84,6% (p=0,002) compared with other groups of statins.

Conclusion: the purpose of statin therapy depends on the severity of the atherosclerotic process the characteristics of the lipid profile and the need correction of risk factors. The most effect is provided by the group of synthetic statin above semisynthetic. Atorvastatin therapy is effective with moderate hypercholesterolemia; rosuvastatin prescribed with severe dyslipidemia.

 

References

1.      Rothwell P.M., Eliasziw M., Gutnikov S.A., Fox A.J., Taylor D.W., Mayberg M.R. et al. Analysis of pooled data from the randomized controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet. 2003; 361: 107-116.

2.      AbuRahma A.F., Srivastava M., Stone P.A. Effects of Statins on Early and Late Clinical Outcomes of Carotid Endarterectomy and the Rate of Post-Carotid Endarterectomy Restenosis. J Am Coll Surg. 2015;220:481-488.

3.      Sillesen H., Amarenco P., Hennerici M.G., Callahan A., Goldstein L.B., Zivin J. et al. Stroke Prevention by Aggressive Reduction in Cholesterol Levels Investigators. Atorvastatin reduces the risk of cardiovascular events in patients with carotid atherosclerosis: a secondary analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Stroke. 2008; 39: 3297-3302.

4.      O'Regan C., Wu P., Arora P., Perri D., and Mills E.J. Statin therapy in stroke prevention: a meta-analysis involving 121,000 patients. Am J Med. 2008; 21: 24-33.

5.      Perler B.A. The effect of statin medications on perioperative and long-term outcomes following carotid endarterectomy or stenting. Semin Vasc Surg. 2007; 20: 252-258.

6.      McGirt M.J., Perler B.A., Brooke B.S., Woodworth G.F., Coon A., Jain S. et al. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors reduce the risk of perioperative stroke and mortality after carotid endarterectomy. J. Vasc Surg. 2005; 42: 829-836.

7.      Paraskevas K.I., Athyros V.G., Briana D.D., Kakafika A.I., Karagiannis A., and Mikhailidis, D.P. Statins exert multiple beneficial effects on patients undergoing percutaneous revascularization procedures. Curr Drug Targets. 2007; 8: 942-951.

8.      Koh K.K. Effects of statins on vascular wall (vasomotor function, inflammation, and plaque stability). Cardiovasc Res. 2000; 47: 648-657.

9.      Amarenco P., Labreuche J., Lavallee P., and Touboul, P.J. Statins in stroke prevention and carotid atherosclerosis (systematic review and up-to-date meta-analysis). Stroke. 2004; 35: 2902-2909.

10.    Amarenco P. and Labreuche J. Lipid management in the prevention of stroke: review and updated metaanalysis of statins for stroke prevention. Lancet Neurol. 2009; 8: 453-463.

11.    Pokrovsky A.V., Beloyartsev D. F., Talibli O. L. Analysis of long-term results of eversion carotid endarterectomy. Angiology and vascular surgery. 2014; 20 (4): 100-108 [In Russ].

12.    Efthymios D. Avgerinos Rabih A., Abdallah Naddaf, Omar M. El-Shazly, Luke Marone, Michel S. Makaroun. Primary closure after carotid endarterectomy is not inferior to other closure techniques. Presented at the Vascular and Endovascular Surgery Society 2015 Summer Meeting, Chicago, Ill, June 17-20, 2015.

13.    Taylor A.J., Kent S.M., Flaherty P.J., Coyle L.C., Markwood T.T., and Vernalis, M.N. ARBITER: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation. 2002; 106: 2055-2060.

14.    Taylor A.J., Sullenberger L.E., and Lee H.Y ARBITER 3: Atherosclerosis regression during open-label continuation of extended-release niacin following ARBITER 2. Circulation. 2005; 112: II-179.

15.    Jones P., Davidson M., Stein E. et al. STELLAR Study Group. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR  Trial). Am. J. Cardiol. 2003; 92(2): 152-160.

16.    Crouse J.R. III, Raichlen J.S., Riley W.A. et al. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: the METEOR Trial. JAMA. 2007;297:1344-1353.

17.    Radak D., Tanaskovic S., Matic P., et al. Eversion Carotid Endarterectomy - Our Experience After 20 Years of Carotid Surgery and 9897 Carotid Endarterectomy Procedures. Ann. Vasc. Surg. 2012; 26(7): 924-928.

18.    Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA. 1995; 273: 1421-1428.

19.    Sever P.S., Poulter N.R., Dahlof B. et al. Different Time Course for Prevention of Coronary and Stroke Events by Atorvastatin in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid-Lowering Arm (ASCOT-LLA). Am J Cardiol. 2005; 96: 39-44.

20.    Paraskevas K.I., Hamilton G., Mikhailidis D.P. Statins: an essential component in the management of carotid artery disease. J Vasc Surg. 2007; 46: 373-386.

 

Abstract:

Internal carotid artery (ICA) pathological kinking considered to be one of the main causes of stroke. Aim of our study was to assess endovascular possibilities to manage this condition. Carotid stenting performed in 15 non-fixed human corpses with ICA kinking (6 - L-shaped, 5 - S-shaped, 4 - looping) under hydrodynamic monitoring.

It is shown that endovascular correction (stenting) of kinked ICA straightens the artery, considerably reduces pressure gradient, and increases volume of flow. At the same time carotid stenting, performed for ICA kinking, does not distress the vessel wall, in particular, it causes no significant intimal trauma. 


Reference

 

 

1.     Riser M.M., Gerause J., Ducoudray J., Ribaunt L. Dolicho-carotide interne avec syndrome vertigneux. Neurology. 1951; 85: 145-147.

 

 

 

2.     Quattlebaum J.L., Upson E.T., Neville R.L. Stroke associated with elongation and kinking of the internal carotid artery: report of three cases treated by segmental resection of the carotid artery. Ann. Surg. 1959; 150:824-832.

 

 

 

3.     Hurwitt E.S. Clinical evolution and surgical correction of obstruction in the branches of arteries. Ann. Surg. 1960; 152:472-475.

 

 

 

4.     Lorimer W.S. Internal carotid artery angioplasty. Surg., Gynecol., Obstet. 1961; 113:783-784.

 

 

 

5.     Паулюкас П.А., Бараускас Э.М. Хирургическая так ика при выпрямлении петель внутренних сонных артерий. Хирургия. 1989; 12: 12-18.

 

 

 

6.     Покровский А.В. Патологическое удлинение и извитость (петлеобразование, кольцеобразование) брахиоцефальных артерий. В кн.: Е.И. Чазов «Болезни сердца и сосудов». Руководство для врачей. М.: Медицина. 1992; 299-302.

 

 

 

7.     Булынин В.И., Мартемьянов С.В., Ласкаржевская М.А. Диагностика и хирургическое лечение различных вариантов патологической извитости внутренних сонных артерий. В сб. 2-й всерос. Съезд серд.-сосуд. хирургов. С.-Пб. 1993; 1: 34-35.

 

 

 

8.     Долматов Е.А., Дюжиков А.А. Хирургическое лечение патологической извитости внутренних сонных артерий. Кардиология. 1989; 3: 45-47.

 

 

 

9.     Еремеев В.П. Хирургическое лечение патологических извитостей, перегибов и петель сонных артерий. Ангиология и сосудистая хирургия. 1998; 2:82-94.

 

 

 

10.   Баркаускас Э.М., Паулюкас П.А. Способ реконструкции устья сонных артерий. Хирургия. 1988; 12: 98-102.

 

 

 

11.   Berger R. Surgical reconstruction of the extracranial carotid internal artery: Management and outcome.J. Vascular Surgery. 2000; 31: 9-18.

 

 

 

12.   Mascoli F., Mari C., Liboni A., VirgiliT., Аrcello D., Mari F., Donin I. The elongation of the internal carotid artery. Diagnosis and surgical treatment. J. Cardiovasc. Surg. 1987; 28 (1): 9-11.

 

 

 

13.   Zanneti P.P., Cremonesi V., Rollo S., Inzani E., Civardi C., Baratta V., Accordino R., Rosa G. Surgical therapy of the kinking of the internal carotid artery. Minerva Chir. 1989; 44 (11): 1561-1567.

 

 

 

14.   Freemann T., Zippit W. Carotid artery syndrome due to kinking: Surgical treatment in 44 cases. Amer. Surg.1962; 28 (11): 745-748.

 

 

 

15.   Derrick. J., Estess M., Williams D. Circulatory dynamics in kinking of the carotid artery. Surgery. 1965; 58 (2): 381-383.

 

 

 

16.   Vannis R.,Joergenson E., Carter R. Kinking of the ICA. Clinical significance and surgical management. Am. J. Surg. 1997; 134(1): 82-89.

 

 

 

17.   Негрей В.Ф., Чернявский А.М., Серкина А.В. Хирургическое лечение патологической извитости брахиоцефальных артерий. Тез. конф. «Диспансеризация и хирургическое лечение больных облитерирующими заболеваниями брахиоцефальных артерий». Москва - Ярославль. 1986; 96-97.

 

 

 

18.   Chino A. Simple method for combined carotid endarterectomy and correction of internal carotid artery kinking.J. Vasc. Surg. 1987; 6 (2): 197-199.

 

 

 

19.   Poindexter J., Patel K., Clauss R. Management of kinked extracranial cerebral arteries. J. Vasc. Surg. 1987; 6 (2): 127-133.

 

 

 

20.   Gyurko G., Reverz J. New surgical procedures for the management of carotid kinking. Acta.Chir. Hung. 1990; 31 (4): 325-331.

 

 

 

21.   Вагнер Е.А., Суханов С.Г., Цемехин Б.Д. Хирургическое лечение патологической извитости брахиоцефальных артерий. В 6 томах. Тез. док. IV съезданевропатологов. 1991; 18-20.

 

 

 

22.   Грозовский Ю.Л., Куперберг Е.Б.,Мучник М.С., Лясс С.Ф., Абрамов И.С., Грибов М.Ю. Тактика и показания к хирургическому лечению больных с сочетанными экстра- и интракраниальными поражениями сонных артерий. Невропатология и психиатрия. 1991; 7: 67-75.

 

 

 

23.   Фокин А. А. Современные аспекты диагностики и хирургического лечения окклюзионно-стенотических поражений ветвей дуги аорты. Дис. д-ра мед. наук. Челябинск. 1995; 320.

 

 

 

24.   Mathias K., Staiger J.,Thon A. et al. Perkutane Katheter Angioplastik der a. Subclavia.Dtsch. med. Wschr. 1980; 105(1): 16-18.

 

 

 

25.   Bachman D., Kim R. Transluminal dilatation for subclavian steal syndrome Amer. J. Roentgenol. 1980; 135: 995-996.

 

 

 

26.   Freitag G., Freitag J., Koch R. et al. Percutaneous angioplasty of carotid artery stenoses. Neuroradiology. 1986; 28 (2): 126-127.

 

 

 

27.   Galichia J. et al. Subclavian artery stenosis treated by transluminal angioplasty. Six cases cardiovasc. Intervent. Radiol. 1983; 6: 78-81.

 

 

28.   МашковскийМ.Д.Лекарственныесредства.М. 1984;2: 101.

 

 

Abstract:

Aim: was to assess computed tomography angiography (CTA) abilities in analysis of internal carotid artery (ICA) critical atherosclerotic lesions.

Material and method: for the period 2014-2016 - 321 patients underwent examination (ultrasound and CTA of brachiocephalic arteries) prior to surgical treatment of ICA occlusive disease. CTA was made on Philips iCT 256-slice (noncontrast examination, arterial and venous phases), 50 ml on nonionic contrast agent was injected (4-4,5 ml/sec). We distinguished several types of ICA changes: stenosis more than 60% and 70%, critical stenosis, subocclusion (also with distal collapse), local occlusion.

Results: CTitical ICA stenosis was detected in 82 patients (26% of all observed cases); ICA changes with diffuse decrease of upper segments - in 20 cases (6,2% of cases). Among group of decreased diameter we saw subocclusion (18 patients) and local occlusion (2 patients). In the setting of local occlusion ICA contrast-enchanced through atypical ascending pharyngeal artery In patients with diffuse decrease of upper ICA segments all elements of circle of Wills were detected in 70% of cases. During surgery CTA results were confirmed, but atherosclerotic plaque extension was higher than observed at CT approximately at 10 mm.

Conclusion: we can refer critical stenosis, subocclusion and local occlusion to critical atherosclerotic ICA changes. The one should consider CTA limitations in differentiation of upper part of atherosclerotic plaque. In majority of cases decrease in ICA diameter was associated with severe atherosclerotic involvement and not with congenital changes CTA is necessary for preoperative assessment of carotid occlusive disease, especially in critical ICA changes.

 

References

1.     John J. Ricotta, Ali AbuRahma, Enrico Ascher, Mark Eskandari, Peter Faries and Brajesh K. Lal. Washington, DC; Charleston, WV; Brooklyn, NY; Chicago, Ill; New York, NY; and Baltimore, Md Updated Society for Vascular Surgery guidelines for management of extracranial carotid disease. J Vasc Surg. 2011: Sep; 54(3):1-31.

2.     Nacional'nye rekomendacii po vedeniyu pacientov s zabolevaniyami brahiocefal'nyh arterij [National recommendations on treatment of brachicephalic arteries disease]. Rossijskij soglasitel'nyj dokument. 2013; 72S [ In Russ].

а)  Nacional'nye rekomendacii po vedeniyu pacientov s zabolevaniyami brahiocefal'nyh arterij [National recommendations on treatment of brachicephalic arteries disease] [Elektronnyj resurs]: ros. soglasit. dok. /Ros. o-vo angiologov i sosudistyh hirurgov, Assoc. serdech.-sosudistyh hirurgov Rossii, Ros. nauch. o-vo rentgenehndovaskulyar. hirurgov i intervencion. radiologov, Vseros. nauch. o-vo kardiologov, Assoc. flebologov Rossii ; L. A. Bokeriya, A. V. Pokrovskij, G. YU. Sokurenko [i dr.]. - M., 2013. - 72 s. - Rezhim dostupa: www. url: http://www.angiolsurgery.org /recommendations2013/recommendations_brachio- cephalic.pdf . 03.04.2015 [In Russ].

b)  Nacional'nye rekomendacii po vedeniju pacientov s zabolevanijami brahiocefal'nyh arteriT [National recommendations on treatment of brachicephalic arteries disease]. M.2013 [In Russ].

3.     Johansson E. and A.J. Fox., Carotid Near-Occlusion: A Comprehensive Review, Part 2-Prognosis and Treatment, Pathophysiology, Confusions, and Areas for Improvement. American Journal of Neuroradiology 2016; 37(2):200-204.

4.     Johansson E. and A.J. Fox., Carotid Near-Occlusion: A Comprehensive Review, Part 1- Definition, Terminology, and Diagnosis. American Journal of Neuroradiology Jan 2016; 37(1):2-10.

5.     Vishnyakova M.V., Pronin I.N., Lar'kov R.N., Zagarov S.S. Komp'yuterno-tomograficheskaya angiografiya v planirovanii rekonstruktivnyh operacij na vnutrennih sonnyh arteriyah [CT-angiography in planning of reconstructive operations on internal carotid arteries]. Diagnosticheskaya i intervencionnaya radiologiya. 2016; 10(3):11-19 [In Russ].

6.     Suzie M. El-Saden, Edward G. Grant, Gasser M. Hathout, Peter T. Zimmerman, Stanley N. Cohen, and J. Dennis Baker. Imaging of the internal carotid artery: the dilemma of total versus near total occlusion. Radiology 2001; 221(2):301-308.

7.     Mamedov F.R., Arutyunov N.V., Usachev D. YU, Lukshin V.A., Mel'nikova-Pickhelauri T.V., Fadeeva L.M., Pronin I.N., Kornienko V.N. Sovremennye metody nejrovizualizacii pri stenoziruyushchej i okklyuziruyushchej patologii sonnyh arterij [Modern methods of neurovisualization in stenotic and occlusive pathology of carotid arteries.]. Luchevaya diag nostika i terapiya. 2012; 3(3):109-116 [In Russ].

8.     Vishnyakova M.V. (ml), Pronin I.N., Lar'kov R.N., Vishnyakova M.V.. Detalizaciya okklyuziruyushchego porazheniya vnutrennej sonnoj arterii pri komp'yuternoj tomograficheskoj angiografii dlya planirovaniya rekonstruktivnyh operacij [Detalization of occlusive lesion of internal carotid artery in CT angiography for planning of reconstrutive operations]. Vestnik rentgenologii i radiologii. 2017; 98(2):69-77 [In Russ].

9.     Lippman H.H., Sundt T.M. Jr., Holman C.B.. The poststenotic carotid slim sign: spurious internal carotid hypolasia. Mayo Clin Proc. 1970; 45:762-767.

10.   Fox Allan J., Michael Eliasziw, Peter M. Rothwell, Matthias H. Schmidt, Charles P. Warlow, Henry J.M. Barnett. Identification, Prognosis, and Management of Patients with Carotid Artery Near Occlusion. American Journal of Neuroradiology. Sep 2005; 26(8):2086-2094

11.   Johansson E., Chman K., Wester P.. Symptomatic carotid near-occlusion with full collapse might cause a very high risk of stroke. J Intern Med 2015; 277:615-623.

 

 

Abstract:

Aim: was to estimate the efficiency and safety of stenting of subtotal stenosis of internal carotid artery

Materials and methods: we analyzed data of 31 patients who underwent stenting of subtotal stenosis of internal carotid artery. Middle age was 68,2±6,9 yrs. Research included 23 males (74,2%). 28 patients (90,3%) had ischemic stroke or transient ischemic attack in anamnesis. Asymptomatic patients (9,7%) in the pre-operative stage underwent single-photon emission computed tomography of the brain, which revealed the presence of subtotal stenosis of internal carotid artery complicated with ishemia. Stenting of internal carotid arteries were made with the help of embolic protection devices in all cases (100%), in 90,3% - with additional proximal protection. In 100% - predilatation of critical stenosis zones were performed. Two patients (6,4%) underwent simultaneous stenting of internal carotid artery and vertebral artery in 1 patient (3,2%) - stenting of internal carotid artery and subclavian artery The operative time was equal to the average 32,6±8,7 minutes. The results of endovascular interventions were assessed by the presence / absence of neurological symptoms during hospitalization and in the late postoperative period. Stent patency and the presence / absence of restenosis were determined by ultrasound, selective angiography of the brachiocephalic arteries. Before discharge in asymptomatic patients evaluated cerebral perfusion using single photon emission computed tomography

Results: successful stenting of subtotal stenosis of the internal carotid artery with blood flow restoration (TICI-3) achieved in 100% of cases. According to the single-photon emission computed tomography of the brain, performed before discharge in asymptomatic patients (9.7%) noted improvement in cerebral blood flow. During the observation period, which amounted to 11,6 ± 3,1 months, the new transient ischemic attacks or ischemic strokes were not observed, no deaths. According to the ultrasonic examination - stents in the internal carotid arteries are passable, with no signs of restenosis.

Conclusion: stenting of critical subtotal stenosis of the internal carotid artery is effective and safe. Application of the proximal cerebral protection can reduce the potential risk of embolism during stenting of subtotal stenosis of the internal carotid artery as it provides protection at all stages of the procedure. It is necessary to conduct large randomized studies to confirm the clinical efficacy and determine the indications for this kind of intervention in these group of patients. 

 

References 

1.    Berman S.S., Devine J.J., Erodes L.S. et al. Distinguishing carotid artery pseudo-occlusion with color flow Doppler. Stroke. 1995; 26:434-438.

2.    Dix J.E., McNulty B.J., Kalimes D.F. Frequency and significance of a small distal ICA in carotid stenosis. AJNR Am. J. Neuroradiol. 1998;19:1215-1218.

3.    Fox AJ. How to measure carotid stenosis. Radiology. 1993;186:316-318.

4.    Gabrielsen T.O., Seeger J.F., Knake J.E. et al.The nearly occluded internal carotid artery: a diagnostic trap. Radiobgy. 1981;138:611-618.

5.    Henderson R., Eliasziw M., Fox AJ. et al. The importance of angiographically defined collateral circulation in patients with severe carotid stenosis. Stroke. 2000; 31:128-132.

6.    Lee D.H., Gao F., Rankin R.N. et al. Duplex and color Doppler flow sonography of occlusion and near occlusion of the carotid artery. AJNR AmJ. Neuroradiol. 1996;17:1267-1274.

7.    Gonzalez A., Gil-Peralta A., Mayol А. et al. Internal carotid artery stenting in patients with near occlusion: 30-day and long-term outcome. AJNR Am.J. Neuroradiol. 2011;32:252-258.

8.    Fox A.J., Eliasziw M., Rothwell P.M. Identification, prognosis, and management of patients with carotid artery near occlusion. AJNR Am.J.Neuroradiol. 2005;26:2086-2094.

9.    North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N.Engl.J.Med. 1991; 325:445-453.

10.  Rothwell P.M., Gutnikov S.A., Warlow C.P., The European Carotid Surgery Trialists’ Collaboration. Reanalysis of the final results of the European Carotid Surgery Trial. Stroke. 2003;34:514-523.

11.  Berman S.S., Bernhard V.M., Erly W.K. et al. Critical carotid artery stenosis: diagnosis, timing of surgery, and outcome. J.Vasc.Surg. 1994;20:499-510. Samson R.H., Showalter D.P., Yunis J.P. et al. Color

12.  flow scan diagnosis of the carotid string sign may prevent unnecessary surgery. Cardiovasc.Surg. 1999; 7:236-241.

13.  Archie Jr J.P. Carotid endarterectomy when the distal internal carotid artery is small or poorly visualized. J.Va,sc.Surg. 1994;19:23-30.

14.  Barnett H.J., Meldrum H.E., Eliasziw M., North American Symptomatic Carotid Endarterectomy Trial (NASCET) collaborators. The appropriate use of carotid endarterectomy. CMAJ. 2002;166: 1169-1179.

15.  Pappas J.N. The angiographic string sign. Radiology. 2002; 222: 237-238.

16.  Giannoukas A.D., Labropoulos N., Smith F.C.T. et al. Management of the near total internal carotid artery occlusion. Eur.J.Vasc.Endovasc. Surg. 2005; 29: 250-255.

17.  O’Leary D.H., Mattle H., Potter J.E. Atheromatous pseudo-occlusion of the internal carotid artery. Stroke. 1989; 20:1168 1173.

18.  Houser O.W., Sundt T.M., Holman C.B. et al. Atheromatous disease of the carotid artery. Neurosurg. 1974;41:321-331.

19.  Heros R.C., Sekhar L.N. Diagnostic and therapeutic alternatives in patients with symptomatic «carotid occlusion» referred for extracranial-intracranial bypass surgery. J.Neurosurg. 1981; 54:790-796.

20.  Sekhar L.N., Heros R.C., Lotz P.R. et al. A

 

Abstract:

The article presents the experience of stenting the internal carotid arteries (ICA) in 45 patients. The patients' age ranged from 49 to 78 years, on average 64.8 years. The degree of ICA stenosis ranged from 60% to 95%, on average 72.7 ± 7.2%. 28 (62.2%) patients had a history of acute cerebrovascular accident, 17 (37.7%) patients had cerebral symptoms of circulatory disorders. After 48 endovascular procedures, neurological complications developed in 3 (6.2%) cases: transient ischemic attack - in 2 (4.1%) patients, minor stroke - in one (2%) patient. Hospital mortality was 2.2%. In the remote period, 13 (28.8%) patients were examined. There were no myocardial infarctions and strokes.  

 

 


 

Abstract:

Ischemic strokes are still the worldwide problem with high mortality and morbidity. Carotid endarterectomy that is used for revascularization of changed artery required precise visualization of carotid arteries at extra- and intracranial level, assessment of intracranial circulation.

 

References

1.     Insul't: Rukovodstvo dlja vrachei. Pod red. L.V. Stahovskoi, S.V. Kotova. [Stroke: guide for physicians. Under edition of L.V.Stakhovsky, V.Kotov] M.: OOO «Medicinskoe informacionnoe agentstvo», 2013;400S [In Russ].

2.     Nacional'nye rekomendacii po vedeniju pacientov s zabolevanijami brahiocefal'nyh arterii. [National recommendations for treatment of patients with pathology of brachiocephalic arteries.] ]2013; S 70 [In Russ].

3.     Vereshhagin N.V. Rol' porazhenij jekstrakranial'nyh otdelov magistral'nyh otdelov golovy v patogeneze narushenij mozgovogo krovoobrashhenija. Sosudistye zabolevanija nervnoj sistemy. [Role of extracranial arteries’ lesion in pathogenesis of disorders of cerebral circulation] Smolensk. 1980; 23-26 [In Russ].

4.     Gusev E.I., Skvorcova V.I. Ishemija golovnogo mozga. [Ischemia of brain]. Zhurn.nevropat. i psihiatr. 2003;9:66- 70 [In Russ].

5.     Harbaugh R.E., Schlusselberg D.S., Jeffery R., Hayden S., Cromwell L.D., Pluta D. Threedimensional computerized tomography angiography in the diagnosis of сerebrovascular disease. J. Neurosurg 1992; 76: 408-414.

6.     Heiserman J.E., Dean B.L., Hodak J.A. et al. Neurologic complications of cerebral angiography. AJNR Am Neuroradiol. 1994; 15: 1401-1407.

7.     Dzhibladze D.N. Patologija sonnyh arterii i problema ishemicheskogo insul'ta (klinicheskie, ul'trazvukovye i gemodinamicheskie aspekty). [ Pathology of carotid arteries and problem of ischemic stroke (clinical, ultrasonic and hemodynamic aspects)] Moskva. 2002; 208S [In Russ].

8.     John J. Ricotta, MD,a Ali AbuRahma, MD, FACS,b Enrico Ascher, MD,c Mark Eskandari, MD,d Peter Faries, MD,e and Brajesh K. Lal MD,f Washington, DC; Charleston, WV; Brooklyn, NY; Chicago, Ill; New York, NY; and Baltimore, Md Updated Society for Vascular Surgery guidelines for management of extracranial carotid disease. J Vasc Surg. 2011 Sep; 54(3): 1-31.

9.     Buskens E., Nederkoorn P.J., Buijs-Van Der Woude T., Mali W.P., Kappelle L.J., Eikelboom B.C., Van Der Graaf Y, Hunink M.G. Imaging of carotid arteries in symptomatic patients: cost-effectiveness of diagnostic strategies. Radiology. 2004;233:101-112.

10.   Edward C. Jauch et al., Guidelines for the Early Management of Patient With Acute Ischemic Stroke. Stroke. 2013;44: 870-947.

11.   Gladstone D.J., Kapral M.K., Fang J., Laupacis A., Tu J.V. Management and outcomes of transient ischemic attacks in Ontario. CMAJ. 2004;170:1099-1104.

12.   North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade stenosis. N Engl J Med. 1991;325:445-453.

13.   Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet. 1998 May 9; 351 (9113): 1379-87.

14.   Osborn A.G.; Diagnostic Cerebral Angiography. 2nd edition Philadelphia, PA: Williams and Wilkins; 1999.

15.   Choi YJ., JungS.C., Lee D.H. Vessel Wall Imaging of the Intracranial and Cervical Carotid Arteries. Journal of Stroke. 2015; 17(3):238-255.

16.   Extracranial vascular-interventional: E. Johansson and A.J. Fox Carotid Near-Occlusion: A Comprehensive Review, Part 1—Definition, Terminology, and Diagnosis. AJNR Am. J Neuroradiol 2016 37: 2-10.

17.   The International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms: risk of rupture and risks of surgical intervention. N Engl J Med. 1998; 339: 1725-1733

18.   Krylov V.V. Jepidemiologija i jetiopatogenez anevrizm i subarahnoidal'nyh krovoizlijanii. [Epidemiology and ethiopathogenesis of aneurysms and subarachnoid hemorrhage] Krylov V.V., Godkov I.M. Hirurgija anevrizm golovnogo mozga: v 3-h t. Pod red. V.V. Krylova. Tom 1. M.: Izd-vo T.A. Alekseeva. 2011; tom.I, Gl. 1: 12-41 [In Russ]. 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы